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Motivations for quantum simulations in lattice gauge
theory and high energy physics

Lattice QCD has been very successful at establishing that QCD is
the theory of strong interactions, however some aspects remain
inaccessible to classical computing.
Finite density calculations: sign problem (MC calculations with
complex actions are only possible if the complex part is small
enough to be handled with reweighing). Relevant for heavy ion
collisions.
Real time evolution: requires detailed information about the
Hamiltonian and the states which is usually not available from
conventional MC simulations at Euclidean time. Collider jet
physics from first principles?
Quantum simulations with optical lattices were successful in
Condensed Matter (Bose-Hubbard), but so far no actual
implementations for lattice gauge theory
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The Abelian Higgs model on a 1+1 space-time lattice

a.k.a. lattice scalar electrodynamics. Field content:
• Complex (charged) scalar field φx = |φx |eiθx on space-time sites x
• Abelian gauge fields Ux ,µ = exp iAµ(x) on the links from x to x + µ̂
• FµνFµν appears in products of U ’s around a plaquette in the µν
plane:Ux ,µν = ei(Aµ(x)+Aν(x+µ̂)−Aµ(x+ν̂)−Aν(x))

• βpl. = 1/g2, g is the gauge coupling and κ is the hopping coefficient

S = −βpl.
∑

x

∑
ν<µ

ReTr [Ux ,µν ] + λ
∑

x

(
φ†xφx − 1

)2
+
∑

x

φ†xφx

− κ
∑

x

d∑
ν=1

[
eµch.δ(ν,t)φ†xUx ,νφx+ν̂ + e−µch.δ(ν,t)φ†x+ν̂U†x ,νφx

]
.

Z =

∫
Dφ†DφDUe−S

Unlike other approaches (Reznik, Zohar, Cirac, Lewenstein, Kuno,....)
we will not try to implement the gauge field on the optical lattice.

Alexei Bazavov1 and Yannick Meurice2 Quantum Abelian Higgs ANL, 3/29/18 4 / 24



The large λ limit (finite λ will not be considered here)

λ→∞, |φx | is frozen to 1, or in other words, the
Brout-Englert-Higgs mode becomes infinitely massive.
We are then left with compact variables of integration in the
original formulation (θx and Ax ,ν̂) and the discrete Fourier
expansions exp[2κν̂cos(θx+ν̂ − θx + Ax ,ν̂)] =∑∞

n=−∞ In(2κν̂)exp(ın(θx+ν̂ − θx + Ax ,ν̂))

This leads to expressions of the partition function in terms of
discrete sums. This is important for quantum computing.
When g = 0 we recover the O(2) model (KT transition)

We use the following definitions:

tn(z) ≡ In(z)/I0(z)

For z non zero and finite, we have 1 > t0(z) > t1(z) > t2(z) > · · · > 0
In addition for sufficiently large z,

tn(z) ' 1− n2/(2z) will be used to take the time continuum limit
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Tensor Renormalization Group formulation

As in PRD.88.056005 and PRD.92.076003, we attach a B(�) tensor to
every plaquette

B(�)
m1m2m3m4

=

{
tm�(βpl), if m1 = m2 = m3 = m4 = m�

0, otherwise.

a A(s) tensor to the horizontal links

A(s)
mupmdown

= t|mdown−mup|(2κs),

and a A(τ) tensor to the vertical links

A(τ)
mleft mright

= t|mleft−mright |(2κτ ) eµ.

The quantum numbers on the links are completely determined by the
quantum numbers on the plaquettes
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Z = Tr [
∏

T ]

Z =∝ Tr

∏
h,v ,�

A(s)
mupmdown

A(τ)
mright mleft

B(�)
m1m2m3m4

 .
The traces are performed by contracting the indices as shown
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The Hamiltonian (time continuum limit)

For 1 << βpl << κτ , we obtain the time continuum limit.
For practical implementation, we need a truncation of the
plaquette quantum number (“finite spin")
We use the notation L̄x

(i) to denote a matrix with equal matrix
elements on the first off-diagonal (like the first generator of the
rotation algebra in the spin-1 representation)
Parameters: Ỹ ≡ (βpl/(2κτ ))Ũg and X̃ ≡ (βplκs

√
2)Ũg which are

the (small) energy scales.
The final form of the Hamiltonian H̄ is

H̄ =
Ũg

2

∑
i

(
L̄z

(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))2 − X̃
∑

i

L̄x
(i) .
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Polyakov loop: definition

Polyakov loop, a Wilson line wrapping around the Euclidean time
direction: 〈Pi〉 = 〈

∏
j U(i,j),τ 〉 =exp(−F (single charge)/kT ); the order

parameter for deconfinement.

With periodic boundary condition, the insertion of the Polyakov loop
(red) forces the presence of a scalar current (green) in the opposite
direction (left) or another Polyakov loop (right).
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In the Hamiltonian formulation, we add − Ỹ
2 (2(L̄z

i? − L̄z
(i?+1))− 1) to H.
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Expectations

• |〈P〉| ∝ e−Nτ∆E , with ∆E the gap between the neutral and charge 1
ground states.

• For κ (or X̃ ) large enough and g2Ns small enough:

∆E ' a/Ns + bg2Ns

(KT phase when g = 0 and a linear gauge potential)

• ∆ENs = f (g2N2
s ) (data collapse related to KT)? This would be great

because it works for small volumes

• For larger g2N2
s , f (g2N2

s ) ∼
√

g2N2
s , so ∆E stabilizes at large Ns at

some value proportional to g (for fixed g).

• The Polyakov loop can be replaced by 1-0 boundary conditions (to
create a charge 1 state).
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Polyakov loop collapse (Judah Unmuth-Yockey)
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Figure: A fit to the universal curve of the form
√

A + Bx . In this calculation,
space and Euclidean time are treated isotropically.
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Polyakov loop collapse (Jin Zhang)
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Figure: Same data collapse with the Hamiltonian formulation: we add
− Ỹ

2 (2(L̄z
i? − L̄z

(i?+1))− 1) to H (lower set), or with 0-1 boundary conditions
(upper set).
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Universal functions I: the Polyakov loop

Today’s posting: arXiv:1803.11166
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Figure: Data collapse of Ns∆E defined from the insertion of the Polyakov
loop, as a function of N2

s U, or (Nsg)2 (collapse of 24 datasets).
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Universal functions II: Background field (1803.11166)
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Figure: The data collapse of Ns∆E as a function of N2
s U, or (Nsg)2, for three

different values of X , or κ, in both the isotropic coupling, and continuous time
limits. Four different system sizes were used: Ns = 4, 8, 16, and 32. The
solid markers are data obtained from DMRG calculations done in the
Hamiltonian limit, while empty markers are data taken from HOTRG
calculations done in the Lagrangian limit. ∆E is the difference in the ground
state energies between a system with zero and one on the boundaries, and a
system with open boundary conditions (zeros on the boundaries). The
isotropic data has been rescaled by 2κ on both axes.
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Collapse breaking: small Ns, large ggauge (P. loop)
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Figure: A plot showing the data collapse across different Ns for sufficiently
small g, and collapse breaking across different Ns at large g in the case of
isotropic coupling. Here κ = 1.6, and Dbond = 41 was used in the HOTRG
calculations.
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Collapse breaking: small Ns, large ggauge (E field)
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Figure: The energy gap between the 01-boundary condition partition function
and the 00-boundary condition (typical open boundary condition) partition
function in the case of isotropic coupling. This is for κ = 1.6 and Dbond = 41
for the HOTRG truncation. Similar to the Polyakov loop gap, for sufficiently
small g we see data collapse, and for g large enough we see the collapse
breakdown.
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Optical lattice implementation with a ladder

H̄ =
Ũg

2

∑
i

(
L̄z

(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))2 − X̃
∑

i

L̄x
(i)

Figure: Ladder with one atom per rung: tunneling along the vertical direction,
no tunneling in the the horizontal direction but short range attractive
interactions. A parabolic potential is applied in the spin (vertical) direction.
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Recent experimental progress

Tunable nearest neighbor
interactions, Johannes Zeiher et al.
arxiv 1705.08372

Quantum gas microscopes, Gross
and Bloch, Science 357, 995-1001
(2017)
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A first quantum calculator for the abelian Higgs model?

Figure: Left: Johannes Zeiher, a recent graduate from Immanuel Bloch’s
group can design ladder shaped optical lattices with nearest neighbor
interactions. Right: an optical lattice experiment of Bloch’s group.
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The quantum Ising model

In the case of 2 long sides (spin 1/2), we recover the quantum Ising
model:

Ĥ = −λ
∑

i

σ̂z
i σ̂

z
i+1 −

∑
i

σ̂x
i − h

∑
i

σ̂z
i

where all the energies are expressed in units of the transverse
magnetic field (the coefficient in front of −

∑
i σ̂

x
i ). In the ladder

realization, this is proportional to the inverse tunneling time along the
rungs. The zero temperature magnetic susceptibility is

χquant . =
1
L

∑
<i,j>

< (σi− < σi >)(σj− < σj >) >∝ ξ1−η ∝ |λ− 1|−ν(1−η)

where < ... > are short notations for 〈Ω|...|Ω〉 with |Ω〉 the lowest
energy state of Ĥ. Recent calculations by Jin Zhang show a nice data
collapse.
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Data collapse for the quantum magnetic susceptibility:
χquant .′ = χquant .L−(1−η), λ′ = L1/ν(λ− 1), h′ = hL15/8
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Looking at the vacuum wavefunction: σz meas. Could
we replace the rungs by q-bits?
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Conclusions

We have proposed a gauge-invariant approach for the quantum
simulation of the abelian Higgs model.
The tensor renormalization group approach provides a discrete
formulation in the limit λ→∞ (suitable for quantum computing)
Calculations of the Polyakov loop at finite Nx and small gauge
coupling show a universal behavior (collapse related to the KT
transition of the limiting O(2) model).
A ladder of cold atoms with Ns rungs, one atom per rung, and
2s + 1 long sides seems to be the most promising realization
Spin truncations can affect the collapse (not discussed here)
Proof of principle: data collapse for the quantum Ising model.
D-wave machine realization?
Thanks for listening!
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